
Implementing Coarse Grained Task Parallelism
Using OpenMP

Manju Mathews #1, Jisha P Abraham #2
Department of Computer Science and Engineering,

Mar Athanasius College of Engineering, Kerala, India

Abstract— Parallelization is an important technique to
increase the performance of software programs. Parallel
programs are written to make efficient use of multiple cores.
Most of the existing legacy applications are sequential without
any multithreading or parallel programming. Manual efforts
required to parallelize these applications are huge and
complicated. So there is a need for automatic parallelization
tools. The proposed system implements coarse grained task
parallelism with the insertion of OpenMP directives in an
input C program. The output is a multithreaded C program
which can utilize multiple cores on multi-core shared memory
systems. The system is placed between application and
compiler and generated output needs to be compiled like a
normal C program. This is a source to source conversion tool
as the input and output are both C source code. To extend
beyond the reach of loop level parallelism, task level
parallelism is proposed and provides better scalability.
Depending on the nature of the program, parallelization may
have a performance improvement.

Keywords— Automatic Parallelization, Task Parallelization,
Parallel Programming, Coarse grained Parallelism.

I. INTRODUCTION

The industry trends suggest an increasing number of
cores in future processors. To utilize available cores parallel
programs should be written. Parallel architectures are well
suited for running computationally intensive applications
such as scientific simulations. The existing legacy
applications do not have any parallelization and when run
on multiple cores, utilize only single core. To make best use
of multiple cores, there is a need to parallelize these
applications.

Manual parallelization is difficult as it requires huge
analysis efforts to identify parallelizable code sections,
identifying dependency and manually inserting directives at
proper places. Parallelization manually is complex as it
requires an understanding of the application and its domain.
Also requires expertise in parallel programming domain.
There is a need for automatic code parallelization tools [1]
that can convert sequential applications to parallel and
address race conditions and collisions.

There are different parallelization tools, frameworks and
language extensions each considering different hardware
architecture, memory architecture etc. OpenMP and MPI
are language extensions for shared memory parallel
machines. Different tools are suitable for different classes
of applications and best possible performance may not be
obtained from a single tool. Many tools are semi-automatic
as the dependency analysis is done manually and
parallelization done using libraries or API’s. The common
approach is on loop level or data parallelism.

The limitation of SMP programming is its limited
scalability due to fine grained loop level parallelism. The
focus here is to provide more scalability using coarse
grained task level parallelism. In this approach, rather than
loop level parallelization, we go for task level
parallelization. The tasks could be outer level loops (for,
while, do-while), if-then statements, function call sites etc.
The proposed system identifies the first level tasks in an
input program, performs dependency analysis, and
generates suitable OpenMP [2] constructs for parallelization.
The system provides synchronization in case of
dependencies. The parallel code generated runs utilizing
multiple cores on SMP’s.

First we consider only the outer-level loops and do not
go for nesting. i.e., if there is a for- loop inside an if
statement, we consider only the outer if statement block for
parallelization. As the next level of this work, we consider
nesting i.e., precisely two level nesting and we identify the
performance benefits. It’s always better to parallelize the
outer most loop in a loop nest, as this reduces overhead due
to parallelization and maximizes the work done for each
thread.

The performance benefits of automatic parallelization [3]
depends heavily on the nature of application at hand. Some
applications with many independent heavy tasks provide a
good speedup. Others with many dependencies and light
weight tasks does not benefit from parallelization. Instead
they may suffer from a time overhead due to parallelization.
That is the benefits of multithreaded and multicore
parallelism could be completely nullified. Also the
performance depends on the number of cores available.

The rest of the paper is organized as follows: Section II
gives a brief literature survey of the various tools for
parallelization. Section III details the implementation of the
proposed system. In section IV, the performance results of
the output parallel code is analysed.

II. LITERATURE SURVEY

There are several tools available for parallelization.
APIs like OpenMP, Pthreads are for shared memory
architectures, MPI for distributed memory architectures and
OpenCL and CUDA for GPGPUs. The challenges in
parallelization are different writing styles, identifying
parallelizable sections, code with I/O, identifying
dependencies etc. Automatic parallelization is employed
when quick results are required with some performance in
case of huge applications.

OpenMP helps to generate parallel code which when
executed creates multiple threads. OpenMP version 3.0
supports task constructs. Some of the automatic

Manju Mathews et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5166-5169

www.ijcsit.com 5166

parallelization tools are:

A. PLUTO

 Automatic parallelizing tool based on polyhedral model
[4]. Transforms C programs considering coarse grained
parallelism and data locality simultaneously. Generates
OpenMP parallel code from sequential C program sections.

B. The Intel Compiler

The Intel compilers [5] automatically generate
multithreaded code for C, C++ and FORTRAN. The focus
is on computationally intensive loop structures. Loops are
parallelized based on data flow analysis.

C. The Par4All Tool

Par4All is an automatic parallelization tool for C and
FORTRAN based on PIPS (Parallelization Infrastructure for
Parallel Systems) [6] compiler framework. Par4All
generates OpenMP or CUDA output for shared memory
processor or GPGPU and also performs some optimizations.

D. S2P Tool

Generates OpenMP parallel C code for shared memory
machines. The tool considers loop level as well as task level
parallelism. Task parallelism implemented using Pthreads
API. The tool considers only outer level loops in the main
program without nesting.

Majority of the tools target loop or data parallelism by
parallelizing independent loop iterations in the programs.
However, parallelizable loops constitute only a small
portion of the application in hand. There is an overhead due
to parallelization. To provide scalability and support larger
class of applications, the proposed system focus on
identification of coarser tasks and implementing task level
parallelism using OpenMP constructs.

III. PROPOSED SYSTEM

The proposed system is an automatic parallelization tool
which takes an input C program and provides a
multithreaded parallel code. The output C program
contains OpenMP task constructs inserted at relevant places
to attain coarse-grained task parallelism. This approach
decomposes a program into tasks, coordinates tasks to
obtain parallelism while maintaining the actual
functionality. The output program need to be compiled like
a normal program and runs making efficient use of multiple
cores. Fig. 1 shows the proposed system in software
execution model.

Fig. 1 Automatic Code Parallelizer in Software Execution Model

The proposed system consists of a front end that can scan
and parse application code and an intelligent backend that
performs static dependency analysis [8] to identify
parallelizable sections of code. The backend has a code
generator that generates parallel code automatically without

human intervention. The parallel code maintains
functionality of the sequential code but can execute faster
and can optimally utilize all the available cores on the
hardware. Fig.2 shows high level block diagram of the
proposed system.

Fig. 2 Block diagram of Automatic Code Parallelizer

A. The Front End

The front end does a static analysis to gather code
information in an intermediate file format. This
intermediate form serves the basis of various analysis done
by backend modules. The different modules are variables
identifier, blocks identifier, block-rwlist identifier etc. The
sequential code is scanned line by line and generates tokens.
These tokens are parsed as per ANSI C grammar and
metadata about various constructs stored in intermediate
file format.

The variables identifier module identifies all local and
global variables and stores information like variable name,
type, scope, line number etc. The blocks identifier identifies
various code blocks that is considered for parallelism. The
blocks are based on program structures and can be if
statement block, while loop block, do-while loop block, for
loop block etc. The block-rwlist identifier module identifies
the list of variables used inside each block. All the
information in the intermediate file format is provided to
the back end for further analysis.

B. The Back End

The main modules in the back end are dependency
analyser, TDM creator and code generator. Back end does a
static dependency analysis and records dependency in
TDM .Code Generator generates parallel code by inserting
OpenMP directives and inserts synchronization constructs
consulting TDM where ever appropriate.

C. Dependency Analysis

Data dependence relations determine when two
statements can be executed in parallel. The four basic types
of data dependence are:

1) Flow Dependence: Also called True Dependence.
Occurs when data written by one statement is read by other.

S1: z = x + y
S2: c = z * 2
Here S1 writes z and S2 reads z. There is a flow

dependence.

2) Anti-Dependence: Occurs when data read by one
statement is written by the other.

S1: z = x + y
S2: x = c * 2

Manju Mathews et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5166-5169

www.ijcsit.com 5167

Here there is anti-dependence between S1 and S2 caused
by variable x

3) Output Dependence: Occurs when data written in one
statement is later written by other.

S1: z = x + y
S2: c = x * 2
Here there is an output dependence between S1 and S2

caused by variable z.

4) Input Dependence: Occurs when data read by one
statement is later read by other statement.

S1: z = x + y
S2: c = x * 2
Here there is an input dependence between S1 and S2,

caused by variable x.
 For Task parallelization, we need to analyse flow
dependence and output dependence. The dependency
analysis is done using variable update analysis. Dependence
information is stored in an n X n matrix called Task
Dependency Matrix (TDM), where ‘n’ is the number of
blocks identified. A value ‘1’ indicates dependency between
corresponding blocks.

Algorithm for Dependency Analysis

1) Create and initialize an n X n matrix (TDM) where n is
the number of tasks or blocks identified

2) For each task, compare with all other successive tasks.

3) If a variable written in one task is read or written in
another task, mark dependency in TDM as ‘1’ in the row
and column corresponding to the tasks.

4) Repeat for all the identified tasks or blocks

D. Generating Parallel Code

Code Generator generates the parallel multithreaded code
by inserting OpenMP directives. The number of threads can
be specified using OMP_SET_NUM_THREADS () routine.
All the data needed for generation of parallel code is
obtained in a completely automatic manner without human
intervention. The tasks which are independent are executed
in parallel. In case of dependencies identified from TDM,
synchronization constructs are inserted. Data scoping can
be specified explicitly. If there is a write dependency on a
variable, specify as shared explicitly.

The steps for Single-level Task parallelization can be
summarized as follows.

1) Selection of appropriate hardware

2) Identification of parallelizable code blocks, like loops,
condition statements, expressions etc.

3) Performing dependency analysis for code blocks and
storing dependency information in TDM

4) Generating parallel code using OpenMP constructs

5) In case of dependencies, provide appropriate
synchronization constructs

6) Execute parallel code and compare performance [9] with
sequential version

 In case of I/O statements, proposed system considers
printf as a read and scanf as a write. The generated parallel
code needs to be compiled using compiler option –fopenmp
to enable recognition of OpenMP directives. The parallel
code runs utilizing all the cores in multi-core shared
memory systems. The performance depends on the nature
of the program, degree of parallelism it has, overhead due
to parallelization, number of available cores, processing
speed, memory architecture etc.

IV. RESULTS AND PERFORMANCE ANALYSIS

For testing purpose, dual core Intel Core i5 with Hyper
Threading (HT) is used (TABLE I). Operating System is
Ubuntu 14.04. The compiler is gcc 4.8.2 supporting
OpenMP version 3.1. A dual core with HT has 2 physical
cores but scheduler considers as 4 logical cores.

TABLE II
TESTING ENVIRONMENT

Processor Type Intel i5 processor-dual core (HT)

Operating System 64-bit Ubuntu Linux 14.04

Clock Speed 2.2 GHz

RAM Size 4 GB

 Two test applications are considered for parallelization
with a number of nested loops. The proposed Automatic
Code Parallelizer is run by varying the number of threads
and performance results are analysed.

Fig.3 shows the execution time on 2 cores with varying
thread number for test program1. With 2 threads there is an
improvement. However there is no improvement after 2
threads because the test program contains only 2 parallel
code blocks. Rest of the blocks are executed sequentially
because of dependency.

Fig.4 shows execution time on 2 cores for test program2
with varying number of threads. There is an overhead due
to parallelization. Also performance is at its peak when run
with 4 threads. Test program2 consists of 4 independent
blocks that could be run in parallel. Hence best performance
when thread number is 4.

0

2

4

6

8

10

12

Seq T1 T2 T3 T4

T
im

e
 i
n
 S
e
c

No. of Threads

Execution Time on 2 Cores with HT

Fig. 3 Execution Time of Test Program 1 by Varying Number of

Threads

Manju Mathews et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5166-5169

www.ijcsit.com 5168

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Seq T1 T2 T3 T4 T8

T
im

e
 i
n
 S
e
co
n
d
s

Number of Threads

Execution Time on 2 Cores with HT

Fig. 4 Execution Time of Test Program2 by Varying Number of
Threads

V. CONCLUSION AND FUTURE WORK

Parallelization is an important technique to increase the
performance of software programs. There is a need to
convert existing legacy applications to parallel for getting
performance gains on multiple cores. Manual parallelization
is tedious and error prone and requires huge efforts. So
automatic parallelization tools are preferred. The proposed
system focus on implementing a task level parallelism using
OpenMP constructs. The tool takes a sequential C program
as input and provides a functionally equivalent parallel
version. Different code blocks considered for parallelism
are loop blocks, condition statements, expressions etc.
Parallelism results from execution of independent tasks
concurrently. In case of dependencies synchronization

constructs are inserted to ensure sequential semantics. The
performance gained by code parallelization depends on the
inherent degree of parallelism present in the original
sequential program. Performance is also proportional to the
available number of cores.
 As a future work, plans to implement nested parallelism,
specifically 2 level nesting. Also dependency analysis need
to be extended to pointers and function call side effects.
There is a need to identify various optimizations to reduce
the overhead due to parallelization.

REFERENCES
[1] P. Randive and V. G. Vaidya, “Parallelization tools,” in Second

International Conference on MetaComputing, 2011.ev and V. P.
Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr.,
Ed. Berlin, Germany: Springer-Verlag, 1998.

[2] OpenMP Official site: http://www.openmp.org/
[3] http://en.wikipedia.org/wiki/Automatic_parallelization_tool
[4] Pluto tool, http://pluto-compiler.sourceforge.net
[5] http://software.intel.com/en-us/articles/automatic-parallelization-

with-intel compilers/
[6] Par4All tool, http://www.par4all.org/
[7] Aditi Athavale, Priti Ranadive, M. N. Babu, Prasad Pawar,

Sudhakar Sah, Vinay Vaidya, and Chaitanya Rajguru, “Automatic
Sequential to Parallel Code Conversion The S2P Tool and
Performance Analysis”, Global Science & Technology Forum
(GSTF) Journal on Computing, 2012, vol. 1, no. 4, pp. 128-137

[8] Anish Sane, Priti Ranadive, and Sudhakar Sah, "Data dependency
analysis using data-write detection techniques", In International
Conference on Software Technology and Engineering (ICSTE)
2010, vol. 1, pp. 1-9.

[9] Multicore Processor, Parallelism and Their Performance Analysis I
Rakhee Chhibber, IIDr. R.B.Garg I Research Scholar, MEWAR
University, Chittorgarh.

Manju Mathews et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5166-5169

www.ijcsit.com 5169

